A peer sends a brand of LCD, the backlight is on, and then the screen is black. And the right side of the screen is a bit black. Above picture. Image compression is too great.
The Picture of 3G 4G LTE/5G Antenna
4g lte antenna,antenna 4g lte,gps 4g lte antenna,5g lte pcb antenna Yetnorson Antenna Co., Ltd. , https://www.xhlantenna.com
3G antenna _5G antenna _14 years antenna manufacturer _ Feiyuxin
14 years focus on antenna research and development, production, sales, 30,000 strength of the factory, 600 people production capacity, the main sucker antenna, glass fiber reinforced plastic antenna view details & GT;
It is widely regarded as high rate of 2 and good anti-multipath fading performance. In the future, RESEARCH related to OFDM technology will also be carried out in 5G communication networks. The main key technologies of 4G communication system include: a. OFDM technology; B. MIMO technology; C. Multi-user detection technology; D. Software radio; E. Smart antenna technology; F. IPv6 technology. China's Ministry of Industry and Information Technology has just issued 4G licenses to the three major operators, and they are still deploying their networks on a large scale with a small number of users. At this time, China Mobile said it will start the RESEARCH and development of 5G communication system. Analysts pointed out that the three major operators are participating in THE RESEARCH and development of 5G, one is to keep up with the changes of The Times, and the other is that the demand is faster than the technology development. Li Zhengmao, vice-president of China Mobile, said at the 2014 MWC in Barcelona: "China Mobile will fully support the development of 5G projects, hoping to lead the industry in THE development of 5G technology and the setting of technical standards." With the deepening of mobile communication technology research, the key support technologies of 5G will be gradually defined and enter the substantive standardization research and formulation stage in the next few years. The jury is still out on what core technologies will be used in the future. However, I have compiled a list of nine key technologies that have been the focus of discussion in various high-end mobile forums. A. Large-scale MIMO technology; B. Filter bank based multi-carrier technology; C. Full duplex technology; D. Ultra-dense heterogeneous network technology; E. Self-organizing network technology; F. Use of high frequency band; G. Software-defined wireless networks; H. Wireless access technology: (1) BDMA (Beam Split multiple Access technology)
5G antenna high-gain antenna [strength team customized on demand]
Yunwei Technology professional provide 5G antenna array antenna microstrip antenna fiberglass antenna Bluetooth antenna uWB antenna car view details & GT;
3 (2) NOMA (Non-orthogonal multiple Access technology) i. D2D (device-to-device) communication. Figure 1 is the layout of Massive MIMO antennas in 5G communication networks. I am studying Massive MIMO technology in my lab. Figure 1 shows users communicating with each other centered on a large-scale antenna. The performance of wireless communication systems is mainly restricted by mobile wireless channels. Wireless channel is very complex, and its modeling has always been a difficult point in system design. Generally, statistics are made according to the measured values of communication systems in specific frequency bands. Wireless fading channel is divided into large scale fading channel model and small scale fading channel model. The so-called large-scale fading model describes the field intensity variation over a long distance (hundreds or thousands of meters) between the transmitter and receiver, and reflects the rule that the received signal power changes with the distance caused by path loss and shadow effect. A small scale fading model describes the rapid fluctuations of the received field intensity over a short distance or time. The large scale fading channel model is caused by the influence of the surface contour (such as mountains, forests, buildings, etc.) between the receiver and the source. The small-scale fading channel model is caused by the multipath effect and doppler effect. If there are a large number of reflected paths but no LOS (direct signal) signal component, the small-scale fading is called Rayleigh fading, and the envelope of the received signal is described statistically by the Rayleigh probability density function. If LOS is present, the envelope is subject to Rician distribution. Multipath effect phenomena cause flat fading and frequency selective fading.